Fault Tolerant Network Interfaces for NoCs

Leandro Fiorin
ALaRI, Faculty of Informatics - University of Lugano
Lugano, Switzerland
fiorin@alari.ch

Mariagiovanna Sami
Politecnico di Milano – DEI
Milano, Italy
sami@elet.polimi.it

DSNoC 2011 – San Diego, California, USA, June 5th 2011
Outline

- Motivations
- Fault model
- Fault tolerant NI architecture
- Preliminary results
- Future work
Motivations

- As CMOS technology scales down into the deep-submicron domain, the aspects of fault tolerance in complex NoC-based architectures play a role of increasing relevance.

- New types of malfunctions and failures (temporary and permanent faults)

- New methodologies and architectural solutions specific for NoCs should be explored
Motivations

- The NI represents a critical point in the design of fault tolerant NoCs:
 - Acts as interface between the core and the system
 - Error in NIs can directly affect the correct transmission of data and control information
 - Errors extremely hard to detect and recover without the appropriate support (for instance **deadlock** or **livelock**)
 - Faulty NIs can isolate working core (or cluster of cores) from the rest of the system
 - MTBF rapidly decreases as the dimension of the system increases (proportional to $1/N^2$)
Motivations
Motivations

- In this work, we target:
 - Temporary faults
 - Permanent faults

- Contributions of this work:
 - To propose a functional fault model for NIs
 - To propose and evaluate a two-level architectural approach for NI’s components employing a limited amount of redundancy
Fault model

- Functional fault model:
 - Corrupt Data Fault
 - Corrupt Protocol
 - Conversion Fault
 - Routing Path Fault
 - Multiple Copies-in-Time Fault

- Focus on LUT, FIFOs, and FSMs
Fault tolerant NI architecture: LUT
Fault tolerant NI architecture: FIFO
Fault tolerant NI architecture: FSMs
Preliminary results: area

LUT

FIFO

NI
Preliminary results: energy & critical path

LUT

FIFO

LUT

FIFO
Preliminary results: survivability

NI

LUT

FIFO

FSM
Conclusions and future work

- We proposed a functional fault model for the Network Interface
- We evaluated alternative architectural fault tolerant solutions for the NI and its components, based on the use of SECDED codes in combination with limited architectural redundancy
- We analyzed overhead of the proposed solutions with respect to alternative implementations: we obtained a saving of 83% in the area overhead as well as a significant energy reduction with respect to an alternative TMR implementation, while maintaining a similar level of robustness to faults
- Main drawback: increased critical path due to Hamming decoder
- Future work will focus on the optimization of the implementation of the SECDED decoder, on the study of reconfiguration policies for employing architectural redundancy at run-time, on extending the use of evaluated techniques to routers
Thanks for your attention!

fiorin@alari.ch